
Quadrans Blockchain
Yellow Paper - v0.2

Michele Battagliola∗, Andrea Flamini†

Riccardo Longo‡, Alessio Meneghetti§, Massimiliano Sala¶

February 18, 2021

Abstract

In this document we present the design of Quadrans, a blockchain
platform for supply chains and IOT devices, capable of performing trust-
worthy and transparent operations. We aim to achieve scalability with-
out losing security or decentralisation. Furthermore we use an innovative
approach to the cryptographic layer of the ledger that gives back con-
trol to users allowing great flexibility, achieving also resiliency in case of
disrupting cryptanalysis advancements. We also natively support Post-
Quantum algorithms and enforce their use in block signing, while sup-
porting lightweight encryption for IOT devices.

Contents

1 Introduction 2

2 Algorithms and Parameters Flexibility 2
2.1 Smart Contract Kernel . 3
2.2 Encoding . 4

3 Users 5
3.1 Digital Signatures . 5

3.1.1 Available Digital Signature Algorithms 5
3.2 Addresses . 7

3.2.1 Authorised Keys . 7
3.2.2 Common Name . 8

4 Nodes 8
4.1 MasterNodes . 8

4.1.1 SynchroNodes . 9
4.2 Miners . 9

∗michele.battagliola@unitn.it, Department of Mathematics, University of Trento
†andrea.flamini.1995@gmail.com, Department of Mathematics, University of Trento
‡riccardolongomath@gmail.com, Department of Mathematics, University of Trento
§almenegh@gmail.com, Department of Mathematics, University of Trento
¶maxsalacodes@gmail.com, Department of Mathematics, University of Trento

1

1 INTRODUCTION 2

5 Chain Structure 9
5.1 The SynchroChain . 9

5.1.1 SynchroBlocks . 11
5.2 ShardChains . 11

5.2.1 ShardBlocks . 12
5.3 The MasterChain . 13

5.3.1 MasterBlocks . 13

1 Introduction

The potential of distributed smart contracts and of the blockchain (a public data
structure very resilient and openly auditable) has been apparent since the very
beginning [But13; CBB16], and great interest has risen especially in particularly
suitable sectors such as financial institutions and supply chains. Nowadays
there are various platforms that offer interesting solutions specifically tailored
to improve or facilitate supply chains, but this sector is huge and variegated,
and there still are many problems not yet addressed.

Here we propose the technical specification for a decentralised platform for
smart contracts [Cos+19b; Cos+19a] with a specific focus on the needs of Indus-
try, complex supply chains, IOT devices, with significant designing efforts on the
security of this platform and its cryptographic and protocol-related aspects. The
proposed blockchain is called Quadrans Blockchain (QB) and consists of three
sub-blockchains, the SynchroChain, the MasterChain and the ShardChain. QB
supports two currencies: Quadrans Tokens (QDT) and Quadrans Coins (QDC).
Users possessing QDT enjoy special priviledges, and are called TokenHolders.

Background

We started working taking into consideration the very long and articulated food
supply chain because it starts from crop fields and it ends to restaurants and
shops. Transparency in the processing and geographical indications schemes
such as DOC and IGP can add substantial value to a product, and customers
grow ever more conscious of the importance of the origin of what they eat. This
means that there are tangible economic incentives in adopting technologies that
enforce a controlled, secure and publicly auditable supply chain. In this scenario
there are many delicate aspects that need to be taken care of: data needs to
be tamper-proof and reliably authenticated and verified, some information may
be confidential and only shared with specific partners, participation has to be
adequately rewarded while preventing and discouraging malicious behaviour.

2 Algorithms and Parameters Flexibility

Quadrans is a blockchain designed to support interaction between users with
peculiar and heterogeneous characteristics: from IOT devices, that power mon-
itoring and automatic update of product status in the supply chain, to end con-
sumers and companies. Such diversity calls for considerable levels of flexibility
when choosing cryptographic primitives, because the computational resources
at the disposal of each actor may differ quite a lot.

2 ALGORITHMS AND PARAMETERS FLEXIBILITY 3

Moreover the realm of information security is in constant evolution, so it is
of paramount importance to have a flexible and resilient approach, capable of
adapting to novel discoveries and improvements. In fact technological advance-
ments may render current solutions insecure or open the way to much more
efficient alternatives, and scientific research could have disruptive cryptanalytic
breakthroughs or discover powerful new approaches.

For these reasons we adopt a flexible approach to the selection and usage of
cryptographic primitives and their parameters, favouring some standard choices
to optimise efficiency but allowing each user to employ its own choice, in order
to balance between security and computational cost, or even to avoid suspicious
constructions (i.e. fear of backdoors).

2.1 Smart Contract Kernel

To manage this ductile design we employ a system of special smart contracts
that act like a sort of cryptographic kernel. In particular they define and encode
the available algorithms for each type of primitive, and validate and organise
their parameters.

Quadrans allows the usage of any algorithm of a non-static pre-approved
list, which initially contains our starting selection. A smart contract updatable
every epoch is responsible to introduce new approved algorithms and maintain
a sub-list of up to 63 standards that are efficiently encoded, from a total of up to
216 different algorithms (a limit that we consider over-conservative). For every
scheme in the list, there is a dedicated smart contract that defines the operating
parameters of the algorithm.

In more detail the smart contract specifies three standard sets of parameters
that correspond to just as many levels of security:

• Basic: suitable also for less powerful devices and interaction with legacy
applications;

• Intermediate: a middle tier that strengthens the security while balancing
efficiency;

• Enhanced : a higher-security level, that is fit for more sensitive and long-
term information.

In addition to these standards, users are allowed to adopt their own parameters,
so that usage can be furthermore tailored to specific needs (for example users
can adopt their own elliptic curves), submitting them to the smart contract. In
fact the same smart contract is used also to validate and assess proposed sets
of parameters, to ensure that they satisfy a minimum level of security (that can
be lower than the one of the basic parameters, to reach out to users that might
have stringent constraints).

This approach optimises storage space and validation effort, since each set is
stored and validated only once. Each smart contract in the kernel specifies a list
of set of parameters and three indexes that identify which entries correspond
to the three standards, so that the standard can easily be updated to adapt to
cryptanalytic breakthroughs maintaining optimal encoding for these preferred
sets. To preserve integrity and backwards compatibility the previous standard
indexes are also shown by the smart contract, alongside the timestamp (epoch

2 ALGORITHMS AND PARAMETERS FLEXIBILITY 4

block index) of the moment the outdated value has been superseded. At the
beginning these standard indexes are 00000000, 00000001, 00000002, so the
first three entries in the parameter list are initialised with the starting choices
for the three standards, later the list can be expanded up to 232 − 1 (more than
four billion) entries than can therefore be indexed with a four-byte value.

The other information stored in the smart contract is a hash-link to the
encoding specification that defines how to actually encode parameter sets and
interpret related values (e.g. public keys for a signature scheme). Users can
then submit their parameter set of choice to the smart contract, which will
append it to the list (encoded according to the specification) if the entry is
not a duplicate and if the parameters pass a series of tests that establish that
they properly define a correct instance of the signature algorithm and sustain a
minimum level of security.

2.2 Encoding

The encoding of algorithm choice has been developed so that the majority of
cases require a single byte, that is called the discerning byte. In particular this
byte encodes the index of the standard algorithm (in the six most significant
bits), and the standard set of parameters (in the crumb composed by the two
least significant bits). The crumbs 01, 10 and 11 correspond to the standard
parameters associated to the aforementioned levels of security, namely the lower,
the middle and the higher level; the crumb 00 signals a non-standard choice and
therefore it must be followed by additional 4 bytes that specify the index of the
chosen parameters in the smart contract list. Similarly the index 000000 for the
standard algorithm signals a non-standard algorithm, so 2 additional bytes that
specify the index of the chosen algorithm. A null byte indicates a non-standard
algorithm with non-standard parameters, so is followed by 6 bytes: first 2 for
the algorithm, then other 4 for the parameters.

So the discerning byte (or the following 2 bytes) identifies the smart contract
that lists the parameters and specifies if a standard set is used; if that is not
the case the index of the chosen set follows, so one can retrieve the value of the
parameters from the smart contract. At this point algorithm and parameters
are established, so the following bytes can be correctly interpreted referring to
the specification defined in the smart contract (e.g. as a public key).

Example 1. Suppose that the following string is the hexadecimal representa-
tion of a public key:

0582006e9398a6986eda61fe91674c3a108c399475bf1e738f19dfc2db11db1d28

The first byte (06) identifies the scheme and therefore how to process the rest.
Its binary representation is:

000001 01

The first (and most significant) six bits identify the first standard algorithm
defined in the digital signature algorithms smart contract (e.g. ECDSA), the last
(and least significant) two bits say that the basic-level standard is used (referring
to the ECDSA parameters smart contract, e.g. the curve secp256k1). This
means that what follows the first byte is the encoding of the public key, since
the curve parameters are established and known, note also that they define the

3 USERS 5

length of the encoding, so the parser knows how many bytes to read. ECDSA’s
public key is a point of an elliptic curve, and the parameters used imply the
quadratic residuosity of the second coordinate, so the remaining sixteen bytes
of the public key are the first coordinate of the point.

3 Users

Users of Quadrans blockchain are identified by their address. Such an address is
derived from a public key whose correspondent private key is owned by the user
it identifies. Quadrans allows its users to choose from various digital signature
algorithms for transaction signing, therefore the format of such public keys can
vary but the format of the address is standardised for everyone. With “user”
we always mean a hardware/software interacting with the Quadrans Blockchain,
rather than the actual person who owns the hardware/software.

3.1 Digital Signatures

Quadrans exploits the flexible adoption of various digital signature algorithms
as described in Section 2 to let each user balance security and computational
cost, moreover we distinguish between transaction-signing and block-signing,
requiring much higher levels of security for block signatures.

In fact we can assume that blocks are created and validated by fairly powerful
users of the network that can surely afford to invest more resources in order to
strengthen the long-term safety of the whole chain. Considering also the relative
proportion between blocks and transactions (the former comprises hundreds of
instances of the latter) we can employ signatures that are much more space-
consuming for the blocks without debilitating the overall efficiency. For these
reasons Quadrans blocks must be signed with Post-Quantum secure algorithms.

3.1.1 Available Digital Signature Algorithms

The initial selection of approved schemes is the following, where we present
public-key length, signature length, and compare their combined length (w.r.t.
a standard security level of 128 bit).

• ECDSA [JMV01] is the widespread standard, especially in the blockchain
world. This means that implementations are widely available, even with
optimisations for low-power devices. Both public keys and signatures are
very short (32 bytes once the curve has been fixed), and together with its
low computational cost this makes ECDSA an efficient signature. However
the security is based on the difficulty of the discrete logarithm (DLOG)
over the group of points of an elliptic curve, and Shor’s algorithm for
quantum computers breaks this assumption [Sho94]. Therefore this choice
is not suitable for block signing, where a post-quantum secure algorithm
is required.

• EdDSA [Ber+12; Ber+15] is another signature scheme based on elliptic
curves, that is gaining advantage in terms of usage on the more classical
ECDSA. The particular types of curves employed (the so called Twisted

3 USERS 6

Edwards curves [Ber+08]) make computations less susceptible to side-
channel attacks and allow for further optimisation especially in batch
signature verification. Another practical advantage is the deterministic
nature of the signature that avoids the pitfalls of incorrect generation of
random parameters, which have led to complete breaches of ECDSA sig-
natures in the past [Sch15]. Key and signature sizes are equal to those
using ECDSA, the computational cost is comparable or lower, and the
security is based on the same mathematical assumption: so EdDSA is
an interesting alternative to ECDSA, but is likewise unsuitable for block
signing.

• CRYSTALS-DILITHIUM [Duc+18] is a lattice-based post-quantum signature
algorithm. The primary advantage of Crystals-Dilithium over similar PQ
proposals is the avoidance of Gaussian Sampling [MW17], which is a prim-
itive easy to misuse [Bru+16] and that may lead to weakening attacks hard
to detect. Public keys are a little more than 1 KB long, with signatures
of roughly 2 KB. This is almost two orders of magnitudes more than el-
liptic curve-based (EC) schemes, but it is a price to pay for post-quantum
security. This scheme has one of the lowest combined length of public key
and signature among PQ algorithms.

• FALCON [Fou+18] is also a lattice-based post-quantum signature algorithm.
It features small signatures and key sizes against other PQ schemes, but it
uses Gaussian Sampling that has some potential issues (see above). Public
keys are little less than 900 B, and signatures around 650 B: the shortest
combined length among NIST round 2 candidates, but they are still an
order of magnitude longer than EC signatures.

• SPHINCS+ [Ber+19] is a post-quantum signature algorithm, this time based
on hash functions. The construction makes few security assumptions (so
it should be more resilient), and the implementation is quite similar to a
scheme which has already been adopted internationally (XMSS [BDH11]).
However implementations should account for fault attacks, that could al-
low signature forgery at a reasonably-low computational cost. Public keys
are only 32 B long, however signatures are quite long (around 8 KB).

• LUOV [Beu+18] is a post-quantum signature algorithm, based on multivari-
ate polynomials. It is an evolution of a well studied older scheme, and it is
conservative in its margin of safety, which ensures that the algorithm can
survive modest improvements to cryptanalysis. Like other multivariate
schemes, it features small signatures but has large public keys: signatures
are only around 250 B, and public keys are 1.5 KB long.

• PICNIC [Cha+17] is a post-quantum signature algorithm, based on a com-
bination of block ciphers, hash functions, and zero-knowledge proofs. The
scheme is designed to be extremely compact for hardware implementa-
tions, allowing for easy hardware acceleration to make the cipher lightweight
on low-power devices. It is also nearly compatible with current X.509 cer-
tificate schemes [ITU19], and claims integrated tamper resistance. Simi-
larly to SPHINCS+, public keys are very short (32 B), but signatures are
definitely longer: around 12.5 KB (signature size is not fixed with this
scheme).

3 USERS 7

• RAINBOW [DS05] is another multivariate post-quantum signature scheme.
It has a simple mathematical construction, which eases a smooth and
correct implementation, and it is a quite old scheme (first proposed in
2005). This means that its security has been widely researched and has
withstood the test of time. It targets computational efficiency and small
signature sizes, but has large key sizes: signatures are only 64 B, but
public keys are around 58 KB.

The selection has been made by analysing the current standards and the
state-of-the-art of digital signature algorithms, while referring in particular to
the ongoing NIST selection regarding post-quantum algorithms [ST]. All post-
quantum schemes in our list have advanced to the second round of the NIST
selection. In defining our list we gave priority to low combined-length of pub-
lic key and signature and variety on the underlying security assumptions, to
improve resiliency against future unexpected attacks.

Besides the smart contract that defines parameter sets, Quadrans requires
that for each digital signature algorithm there also is a smart contract that
allows to verify any signature computed with that algorithm, so that it can be
used as a reference implementation (although not optimised since it is general
purpose for all parameters) and as last resource to verify signatures for wallet
implementation that do not natively support that algorithm.

3.2 Addresses

User addresses in Quadrans are strings of hexadecimal characters that encode
some bytes derived from the description of the user’s authorised keys and com-
mon name, plus some other checksum bytes that help avoiding mistakes and
clerical errors1. This means that users may check the formal validity and co-
herence of an address even offline.

3.2.1 Authorised Keys

Addresses support natively multi-signatures and even more complex access poli-
cies. Addresses embed information about the public keys whose corresponding
private keys can withdraw from these addresses’ balances. Simple addresses
specify a single public key, and a signature verifiable with that key is sufficient
to authorise any operation on behalf of these addresses. However more sophis-
ticated addresses may specify various public keys (even of different signature
protocols) and a policy that indicates which signatures are required to autho-
rise transactions. For example an address may be associated to a public key
for a post-quantum algorithm plus three other ECDSA keys and specify that
authorisation may come through a single post-quantum signature or at least
two out of three ECDSA signatures.

1At this preliminary stage we define addresses as a simple string of 64 hexadecimal
characters encoding the 256 bit digest of Keccak-256 (to achieve retro-compatibility with
Ethereum [But13]) computed with the encoding of a single public key as input. However
we intend to further study the matter and improve and expand the algorithm for address
computation to achieve the goals presented in this section in a future release.

4 NODES 8

3.2.2 Common Name

Quadrans addresses embed a common name for their users. This avoids du-
plicated insertions of the same public key to the blockchain: once an address
has been disclosed, all information (including the public key and the common
name) are known to the community, hence further transactions can refer to ad-
dress and common name only, without the need of specifying the entire public
key.

Common names are not required to be fully human-readable: they can also
encode IOT devices IDs in a way that only the owner may recognise and identify
them, or even be random strings if some users wish to preserve their pseudo-
anonymity.

4 Nodes

The Quadrans Blockchain is structured into three types of intertwined chains: a
SynchroChain, a MasterChain, and multiple ShardChains (See Section 5). The
Quadrans network is composed by two sets of active nodes:

• MasterNodes, which filter incoming transactions and are in charge of
achieving a global consensus, maintaining the MasterChain and updating
the Global State of the architecture, moreover they are also responsible of
maintaining synchronization by managing the SynchroChain.

• Miners, which work in parallel on the ShardChains, validating transac-
tions and running Smart Contracts, and are in charge of achieving a local
consensus.

4.1 MasterNodes

To become a MasterNode, a TokenHolder needs to

• possess enough QDT;

• (participate and) win a PoS competition.

If a TokenHolder wins the PoS competition (possibly with the help of other
TokenHolders) during epoch h, then it will be a MasterNode during epoch h+2.
MasterNodes are in charge of:

• managing incoming transactions (they include the incoming transactions
that pass a formal check into a Transaction Pool);

• achieving the Global Consensus:

– validating Miners’s work and constructing the MasterBlocks;

– managing the Global State by aggregating the Local States;

• deciding the behaviour of the Quadrans Blockchain:

– collecting bets from TokenHolders participating in PoS competitions;

– collecting solutions of the PoW competitions from prospective Min-
ers;

5 CHAIN STRUCTURE 9

– deciding the number of Shards and other parameters, in order to op-
timise the workload of Miners, achieve the best possible throughput,
and maintain strong security;

4.1.1 SynchroNodes

The SynchroNodes are MasterNodes that are in charge of managing the Syn-
chroChain.

4.2 Miners

If a TokenHolder wins the PoW [MST20b; MST20a] competition during epoch
h, then it will be a Miner during epoch h+ 2.
Miners are in charge of managing ShardChains by:

• contacting MasterNodes to obtain the transaction pool;

• running Smart Contracts as specified by valid transactions;

• updating the Local State;

• creating ShardBlocks;

• reaching a local consensus on ShardBlocks not yet confirmed by the Mas-
terChain.

5 Chain Structure

The Quadrans Blockchain is a set of blockchains, where Miners are divided into
shards to work simultaneously on the computation of Smart Contracts, and
therefore achieve a large throughput of executed transactions [Men+19]. The
blockchains managed by Miners are called ShardChains. In addition, MasterN-
odes work on a higher-level chain, the MasterChain, collecting the states of
ShardChains to achieve a global consensus. Finally, time is divided into slots of
fixed length, and each slot is pre-assigned to a single Miner per ShardChain and
to a single MasterNode. To coordinate the work on these chains and enhance
safety, Quadrans has an extra chain, called SynchroChain, that marks the be-
ginning of time-slots, time-stamps the other blocks, and defines the parameters
of the ledger.

5.1 The SynchroChain

The consensus mechanisms that regulate the Quadrans blockchains rely heavily
on time-related concepts, therefore it is necessary to coordinate and synchro-
nize their execution. The SynchroChain acts as a Trusted Third Party that
time-stamps the blocks on the other chains, and regulates the flow of time. In
Quadrans time is discretized on two levels:

• epochs inside which parameters of the chains have fixed values, but these
values can change from one epoch to the other;

5 CHAIN STRUCTURE 10

• time-slots that regulate the production of blocks (one block per chain per
time-slot). The number of time-slots in an epoch is a parameter, therefore
different epochs can have a different number of time-slots.

The SynchroChain is controlled by SynchroNodes, that are chosen among
the TokenHolders that are potential MasterNodes.

At the end of each time-slot the SynchroNodes produce a SynchroBlock that
timestamps (and partially validates) all the blocks created during that time-slot.
Consequentially the publication of a SynchroBlock marks the start of the next
time-slot.

5 CHAIN STRUCTURE 11

The last SynchroBlock of an epoch is called EpochBlock and contains addi-
tional information that regulates the operation on the chains:

• epoch parameters, fixing their values to be used in a future epoch (some
values are dictated for the next epoch, some for the one after, and some
for an epoch even further into the future);

• the information regarding the PoW competitions that regulate the Shard-
Chain;

• the information regarding the PoS competition that regulates the Master-
Chain.

SynchroBlocks are referenced by the ShardBlocks created in the following time-
slot, so it is necessary that the consensus on the SynchroChain is reached im-
mediately, hence a BFT algorithm has been chosen [CL99].

Every SynchroBlock gives preliminary validation to the blocks of the other
chains created in its time-slot (at most one MasterBlock and one ShardBlock
per shard) by hash-linking them.

When an EpochBlock Er is created during epoch r − 1, MasterNodes add
to their transaction pools the coinbase transactions corresponding to time-slots
of Epoch r. Coinbase Transactions contain both the QDC to be created and
the QDT that the TokenHolder has bet to become a MasterNode for Epoch r.
These coinbase transactions are managed by Miners after the creation of the
corresponding MasterBlocks. See Sections 5.2.
Linked to the EpochBlock there is a Delta State: information useful to recon-
struct the current state. The knowledge of the state at the time of the previous
EpochBlock and of the Delta State allows the correct reconstruction of the cur-
rent state. This feature can be seen as the inclusion of check-points of the state,
and it allows both fast verification of the correctness of the state and fast update
of the state. Any new node can request only the Delta States of EpochBlocks
and correctly obtain the current state.

5.1.1 SynchroBlocks

The structure of EpochBlock Er is shown in Table 1.

5.2 ShardChains

The ShardChains are parallel blockchains where the Miners actually execute
transactions and smart contracts. To manage the scalability, the number of
ShardChains per Epoch (and therefore the degree of parallelization) is flexible.
During epoch h there are Nh parallel ShardChains (a parameter specified in the
EpochBlocks), and the Epoch lasts eh time-slots, so during each Epoch a total
number of Nh · eh blocks can be created.

The selection of the TokenHolders that become Miners and create Shard-
Blocks during Epoch h is made through a PoW competition held during Epoch
h− 2, whose results are included in the EpochBlock Eh−2. In this way, Miners
know in advance the time-slots in which they have to be active to create the
assigned blocks. Each Miner active in a ShardChain is in charge of the creation
of a maximum of mmax,h blocks. At each Epoch, the number of Active Miners
is therefore at least Nh·eh

mmax,h
.

5 CHAIN STRUCTURE 12

HEADER

H(Syhi−1) hash-pointer to previous SynchroBlock
Ts timestamp
Ri root of the Merkle tree of DATA

sigα1
(Syhi−1)

... signatures of the header (computed by
SynchroNodes)

sigαk
(Syhi−1)

DATA

H(Mahi)

H(Shh1,i) hash-pointers to the blocks created
... during ith time-slot of epoch h

H(ShhNh,i
)

EPOCH
DATA

(only in EpochBlocks, i.e. if i = eh)

PoS DATA information that regulate
PoW DATA the consensus on the other chains

parameters value of parameters for following epochs

Table 1: SynchroBlock Syhi created at the end of the ith time-slot of epoch h,
by SynchroNodes α1, . . . , αk. The signatures are formally put inside the header,
since hash-pointers are defined as the hash value of a header.

Each ShardChain has the duty of managing transactions, that are divided
into distinct pools according to their input address.
When Miners create blocks during their assigned time-slots, they update the
local state, and then send a Delta State to the MasterNodes via an off-chain
communication. The MasterNodes use this Delta State to update the Global
State.

Remark 1. Miners have to be aware of the balance of each account whose address
is managed by their own Shard (they can do this by keeping a copy of their
ShardChain’s local state), and have to check in the Global State for transactions
coming from other Shards which may have changed the balance (they can do
this by off-chain communication with MasterNodes).

5.2.1 ShardBlocks

The structure of ShardBlock Sh,jh created by Miner m is shown in Table 2.

5 CHAIN STRUCTURE 13

HEADER

H(Shhσ,j) hash-pointer to ShardBlock Shhσ,j
H(Mahs) hash-pointer to MasterBlock Mahs
H(Syhi−1) hash-pointer to previous SynchroBlock
(x,K, c) PoW data
Rh,jh Merkle root of executed transactions
H(Σhσ,i) digest of the local state

sigm(Shhσ,i) signature of the header by Miner m

DATA

txh,jh,1
txh,jh,2 list of executed transactions
...

LOCAL STATE

Table 2: ShardBlock Shhσ,i created by Miner m during the ith time-slot of Epoch

h, on the shard σ. sigm(Shhσ,i) is the signature of the first five entries of the

header of the block Shhσ,i. The signature is formally put inside the header, since
hash-pointers are defined as the hash value of a header.

5.3 The MasterChain

The MasterChain is a blockchain where the MasterNodes aggregate the com-
putations of each ShardChain that have reached local consensus into a global
state.

Since time is divided into Epochs of fixed length, during each Epoch h the
MasterNodes create eh blocks of the MasterChain. During its assigned time-
slot, the active MasterNode creates a block of the MasterChain.
Each MasterBlock has the role of finalizing the State of the Quadrans Blockchain
by putting together all local states updated by Miners during the creation of
ShardBlocks. All information on the ShardStates are collected by MasterNodes
via off-chain communication as soon as Miners create new ShardBlocks.
The consensus for the MasterChain is obtained by looking at the chain with
larger weight.

5.3.1 MasterBlocks

The structure of MasterBlock Mt created by Miner α is shown in Table 3.

REFERENCES 14

HEADER

H(Mahs) hash-pointer to MasterBlock Mahs
H(Syhi−1) hash-pointer to previous SynchroBlock

H(Shh1,i1)
... hash-pointers to finalized ShardBlocks

H(ShhNh,iNh
)

H(Σi) digest of the global state
Ti timestamp

sigα(Mahi) signature of the header by Miner α

GLOBAL STATE

Table 3: MasterBlock Mahi created by MasterNode α during the ith time-slot
of epoch h. The signature is formally put inside the header, since hash-pointers
are defined as the hash value of a header.

References

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. “XMSS
- a practical forward secure signature scheme based on minimal se-
curity assumptions”. In: International Workshop on Post-Quantum
Cryptography. Springer. 2011, pp. 117–129.

[Ber+08] Daniel J Bernstein et al. “Twisted Edwards curves”. In: Interna-
tional Conference on Cryptology in Africa. Springer. 2008, pp. 389–
405.

[Ber+12] Daniel J Bernstein et al. “High-speed high-security signatures”. In:
Journal of Cryptographic Engineering 2.2 (2012), pp. 77–89.

[Ber+15] Daniel J Bernstein et al. “EdDSA for more curves”. In: Cryptology
ePrint Archive 2015 (2015). url: https://eprint.iacr.org/
2015/677.

[Ber+19] Daniel J Bernstein et al. “The SPHINCS+ signature framework”.
In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2019, pp. 2129–2146.

[Beu+18] W Beullens et al. LUOV signature scheme proposal for NIST PQC
project (Round 2 version). 2018. url: https : / / github . com /

WardBeullens/LUOV/raw/master/Supporting_Documentation/

luov.pdf.

https://eprint.iacr.org/2015/677
https://eprint.iacr.org/2015/677
https://github.com/WardBeullens/LUOV/raw/master/Supporting_Documentation/luov.pdf
https://github.com/WardBeullens/LUOV/raw/master/Supporting_Documentation/luov.pdf
https://github.com/WardBeullens/LUOV/raw/master/Supporting_Documentation/luov.pdf

REFERENCES 15

[Bru+16] Leon Groot Bruinderink et al. “Flush, Gauss, and Reload – A Cache
Attack on the BLISS Lattice-Based Signature Scheme”. In: Interna-
tional Conference on Cryptographic Hardware and Embedded Sys-
tems. Springer. 2016, pp. 323–345.

[But13] Vitalik Buterin. Ethereum: a next generation smart contract and
decentralized application platform. https://github.com/ethereum/
wiki/wiki/White-Paper. 2013.

[CBB16] Christopher D. Clack, Vikram A. Bakshi, and Lee Braine. “Smart
Contract Templates: foundations, design landscape and research
directions”. In: CoRR abs/1608.00771 (2016).

[Cha+17] Melissa Chase et al. “Post-quantum zero-knowledge and signatures
from symmetric-key primitives”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security.
2017, pp. 1825–1842.

[CL99] Miguel Castro and Barbara Liskov. “Practical Byzantine fault tol-
erance”. In: OSDI. Vol. 99. 1999, pp. 173–186.

[Cos+19a] Davide Costa et al. Introducing Quadrans. 2019. url: https://
quadrans.io/content/files/quadrans-light-paper-en.pdf.

[Cos+19b] Davide Costa et al. Quadrans Whitepaper. 2019. url: https://
quadrans.io/content/files/quadrans-white-paper-rev01.

pdf.

[DS05] Jintai Ding and Dieter Schmidt. “Rainbow, a new multivariable
polynomial signature scheme”. In: International Conference on Ap-
plied Cryptography and Network Security. Springer. 2005, pp. 164–
175.

[Duc+18] Léo Ducas et al. “CRYSTALS-Dilithium: A Lattice-Based Digital
Signature Scheme”. In: IACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2018.1 (Feb. 2018), pp. 238–268. doi:
10.13154/tches.v2018.i1.238- 268. url: https://tches.

iacr.org/index.php/TCHES/article/view/839.

[Fou+18] Pierre-Alain Fouque et al. “Falcon: Fast-Fourier lattice-based com-
pact signatures over NTRU”. In: Submission to the NIST’s post-
quantum cryptography standardization process (2018). url: https:
//www.di.ens.fr/~prest/Publications/falcon.pdf.

[ITU19] ITU. X.509 : Information technology - Open Systems Interconnec-
tion - The Directory: Public-key and attribute certificate frame-
works. Oct. 2019. url: https://www.itu.int/rec/T- REC-

X.509-201910-I/en.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. “The ellip-
tic curve digital signature algorithm (ECDSA)”. In: International
Journal of Information Security 1.1 (2001), pp. 36–63.

[Men+19] Alessio Meneghetti et al. “A Survey on Efficient Parallelization of
Blockchain-based Smart Contracts”. In: Annals of Emerging Tech-
nologies in Computing (AETiC) 3.5 (2019).

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://quadrans.io/content/files/quadrans-light-paper-en.pdf
https://quadrans.io/content/files/quadrans-light-paper-en.pdf
https://quadrans.io/content/files/quadrans-white-paper-rev01.pdf
https://quadrans.io/content/files/quadrans-white-paper-rev01.pdf
https://quadrans.io/content/files/quadrans-white-paper-rev01.pdf
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://www.di.ens.fr/~prest/Publications/falcon.pdf
https://www.itu.int/rec/T-REC-X.509-201910-I/en
https://www.itu.int/rec/T-REC-X.509-201910-I/en

REFERENCES 16

[MST20a] Alessio Meneghetti, Massimiliano Sala, and Daniele Taufer. “A note
on an ECDLP-based PoW model”. In: CEUR Workshop Proceed-
ings Vol-2580 DLT 2020 (2020).

[MST20b] Alessio Meneghetti, Massimiliano Sala, and Daniele Taufer. “A Sur-
vey on PoW-based Consensus”. In: Annals of Emerging Technolo-
gies in Computing (AETiC) 4.1 (2020).

[MW17] Daniele Micciancio and Michael Walter. “Gaussian sampling over
the integers: Efficient, generic, constant-time”. In: Annual Interna-
tional Cryptology Conference. Springer. 2017, pp. 455–485.

[Sch15] Markus Schmid. ECDSA-application and implementation failures.
2015. url: https : / / koclab . cs . ucsb . edu / teaching / ecc /

project/2015Projects/Schmid.pdf.

[Sho94] Peter W Shor. “Algorithms for quantum computation: discrete log-
arithms and factoring”. In: Proceedings 35th annual symposium on
Foundations of Computer Science. IEEE. 1994, pp. 124–134.

[ST] National Institute of Standards and Technology. Post-Quantum
Cryptography Standardization - Post-Quantum Cryptography. url:
https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization.

https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Schmid.pdf
https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Schmid.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

	Introduction
	Algorithms and Parameters Flexibility
	Smart Contract Kernel
	Encoding

	Users
	Digital Signatures
	Available Digital Signature Algorithms

	Addresses
	Authorised Keys
	Common Name

	Nodes
	MasterNodes
	SynchroNodes

	Miners

	Chain Structure
	The SynchroChain
	SynchroBlocks

	ShardChains
	ShardBlocks

	The MasterChain
	MasterBlocks

